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Introduction to McStas n
McStas

Numerical experiments before Los Alamos

• In 1777 Georges-Louis Leclerc, comte de Buffon was the first to “numerical 
experiments” for solving a problem of geometrical probability. 

• The experiment involves dropping a needle on a lined surface and can be used to 
estimate π

• In the 1930’s, Fermi used sampling methods to estimate quantities involved in 
controlled fission 
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Monte Carlo techniques
• During WW2, “numerical experiments” were applied at Los Alamos for solving 

mathematical complications of computing fission, criticality, neutronics, 
hydrodynamics, thermonuclear detonation etc.

• Notable fathers:   John v. Neumann  Stanislav Ulam Nicholas Metropolis
• Named “Monte Carlo” after Ulam’s fathers frequent visits to the Monte Carlo casino 

in Las Vegas
• Initially “implemented” by letting large numbers of women use tabularized random 

numbers and hand calculators for individual particle calculations
• Later, analogue and digital computing devices were used
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•               FERMIAC                                                 ENIAC
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Monte Carlo techniques



• Estimating Pi:

n
McStas

Neutrons 2.0 Berlin 2013
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Monte Carlo techniques
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n
McStas

Neutrons 2.0 Berlin 2013

Monte Carlo techniques
• Los Alamos has since then developed and perfected many different monte carlo 

codes leading to what is today known as the codes MCNP5 and MCNPX
• State of the art is MCNPX (or soon the merged MCNP6 code) that features 

numerous (even exotic) particles
• MCNP was originally Monte Carlo Neutron Photon, later N-Particle
• Mainly used for high-energy particle descriptions in weapons, power reactors and 

routinely used for estimating dose rates and needed shielding
• Does not to date handle coherent scattering of neutrons due to the focus 

on high energies
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Neutrons 2.0 Berlin 2013

Ray-tracing methods

• When neutrons move in “free space”, we use ray-tracing - but in most cases in 
direction source -> detector

• Of course parabolas rather than straight lines are uses to implement gravity
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Neutrons 2.0 Berlin 2013

Elements of Monte-Carlo raytracing
• Instrument Monte Carlo methods implement coherent scattering effects
• Uses deterministic propagation where this can be done
• Uses Monte Carlo sampling of “complicated” distributions and stochastic processes 

and multiple outcomes with known probabilities are involved
• - I.e. inside scattering matter
• Uses the particle-wave duality of the neutron to switch back and forward between 

deterministic ray tracing and Monte Carlo approach

• Result: A realistic and efficient transport of neutrons in the thermal and cold range
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Neutrons 2.0 Berlin 2013

Simulation codes for Monte Carlo ray-tracing of 
neutron instruments (incomplete?)
• US codes:

• NISP (P Seeger & L Daemen, LANL)
• IDEAS (X-L Wang ORNL, originally H Lee ORNL)
• Instrument Builder (JK Zhao ORNL)
• McVine (engine of the DANSE vnf project) (J Lin Caltech)

• European codes:
• RESTRAX/SIMRES (J Šaroun, NPI & J Kulda, ILL)
• VITESS (K Lieutenant et al. HZB plus S Manoshin JINR)
• McStas (P Willendrup & E Knudsen DTU, K Lefmann KU, E Farhi ILL, U Filges PSI)
• [ NADS (P Bentley ESS) ]

• Japanese code:
• PHITS (MCNP-like) has a few features for instrument beam transport

• There may be others I do not know of...
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Example: Instrument simulation of R2D2  

free parameters:  
wavelength  λ   initial 
position   x,y  initial 
direction  vhor/v, vvert/v  
dir. after monochr. θm, φm  

scattering direction θs, φs  
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The ’Weight’ Parameter  

• The trajectories are calculated  for 
single neutrons 

• A highly unequal distribution of a  
parameter is a challenge  • 
Choosing most events around  the 
peak(s) and only few in the  tails 
shows poor convergence 
• The method of choice is  therefore: 

weighting the events  (according 
to the distribution) 

• The weight parameter can also  be 
used to treat events like  
reflection 

• Weighting is a numerical trick,  not 
the treatment of an  ensemble 
average  

wavelength λ [Å] 
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Absolute Flux values  

• By proper normalization, the  
weight can be expressed as a  
neutron current (or intensity)  [n/
s]  

• Summing of the weights of all  
trajectories gives the neutron  
current at any point of the  
instrument  

• By processes like reflection the  
intensity decreases, while the  
number of trajectories remains  
unchanged 

• The trajectories are the events  of 
the statistical experiment  

wavelength λ [Å] 

• ICW=  ∫ j(λ) d λ  

      ≈ (λmax-λmin)/N  ∑ j(λi)                           
i 

• ISS ≈(λmax-λmin)(tmax-tmin)/N  ∑ j(λi,ti)  
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VITESS GUI (after loading an instrument)  
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McStas GUI (after loading an instrument)  

McStas  8  18.09.2013  K. Lieutenant      MC Simulations    McStas/VITESS School 2013  Berlin  



graphical user interface  

parameters  parameters  parame

source   module 2   module n  monitor  sim_data  

I(par)  param. file  param.file  

instrument.inf  geometry.inf  log_file  

Concept of VITESS  
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Concept of McStas  

GUI or text editor  

parameters  

} instrument  all users 

advanced users  
+ McStas team 

McStas team  

components  C file  

Compiler  
kernel  

executable  

instr. figure  I(par)  
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Right-handed co-ordinate systems 

       VITESS          McStas  x: along 
the beamline        x: to the left  y: to the left     
  y: (vertically) up  z: 
(vertically) up    z: along the beamline  

y  x  

Co-ordinate Systems in VITESS and McStas  

z  y  

x  z  

view from moderator towards sample  
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Parameters in VITESS and McStas  

VITESS                                             McStas 
• ID 
• criterion ‘ray tracing’ 
• ‘colour’  
• time of flight [ms] 
• weight [n/s] 
• location of neutron x [cm] 
• location of neutron y [cm] 
• location of neutron y [cm] 
• wavelength [Å] 
• flight direction vx/|v| 
• flight direction vy/|v| 
• flight direction vz/|v| 
• spin Sx 

• spin Sy 

• spin Sz  

• time of flight [s] 
• weight [n/s] 

• location of neutron x [m] 
• location of neutron y [m] 
• location of neutron y [m] 

• speed vx[m/s] 
• speed vy[m/s] 
• speed vz[m/s] 

• spin Sx 

• spin Sy 

• spin Sz  
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Simulation Output  
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Al2O3on PUS 
Measurement
Simulation 2
Analytical 2 

Example: Al2O3on PUS  
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Example: Improvement of R2D2 using NAC sample  
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• If some information about the sample is available, it  can 
be checked what time and which settings are  needed 
for the real experiment 

• Instrument and data analysis 
• Simulations provide a large amount of information on  the 

properties of the neutrons (e.g. on correlations in  phase 
space and spin space) 

• They allow comparing true and measured sample  
properties  

• Teaching 
E. Farhi, M. Johnson, V. Hugouvieux and 
W. Kob, ILL Annual Report (2006) 87.  

What can Monte Carlo Simulations be used for ?  

• Instrument optimization 
• New ideas can be tested first in a simulation 
• Different option can be compared 
• Numerical optimization is possible 

• Virtual experiments  
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