VITESS software for Monte-Carlo

IESS

Daniil Nekrassov Klaus Lieutenant Carolin Zendler

VITESS Team

Actual Developer Team

Michael Fromme

e Daniil Nekrassov

Former Developers

Carolin Zendler An

Andreas Houben

Sergey Manoshin

Dietmar Wechsler

Friedrich Streffer

Phillip Bentley Dickon Champion

Mirko Boin

Leo Cussen

Nikolaos Tsapatsaris

Raul Erhan

- History
- Characteristics of the VITESS simulation package
 - Concept
 - GUI, help system, output
 - Ways to use it
 - Instrument visualization
- Examples for instrument design and basic research

- Initiative:
 - Idea of Ferenc Mezei to realize a package well suited to simulate instruments on neutron spallation sources, as European spallation source (ESS) has been planned
- Important dates
 - 1999: Release of VITESS 1.0 (First complete instruments simulated)
 - 2000: SCANS collaboration started, in FP6 and FP7 continued as MCNSI (McStas, VITESS, ...)
 - 2001: Release of VITESS 2.0 containing polarisation, absolute flux values, improved GUI (several ESS instruments simulated)
 - 2005: HMI stops support of VITESS
 - 2006: VITESS released under GNU license (more developers all working only part time on VITESS)
 - 2010: VITESS again supported by HZB (permanent position for simulations)
 - 2012: VITESS 3.0 released
 - 2013: VITESS 3.1 released
 - 2013: VITESS 3.2 will be released!

The VITESS Package: Home Page 'www.helmholtz-berlin.de/vitess'

🥹 VITESS - Mozilla Firefox		
<u>Datei Bearbeiten Ansicht Chro</u>	onik <u>L</u> esezeichen E <u>x</u> tras <u>H</u> ilfe	
www.helmholtz-berlin.d	le/forschung/grossgeraete/neutronenstreuung/projekte/vitess/index_de.html 🔶 ⊽ ୯ 🛛 🚰 • Google	٩
🗧 Englisch - Deutsch Wörterbuc.	× HZZ VITESS × +	
HZB Helmholtz Zentrum Berlin		
기도 · Intranet · Mein Intranet · Sitema	p ·Kontakt ·Impressum ·Erweiterte Suche Suche: In allen Bereichen ▼	Begriff eingeben, Enter drücken
	Helmholtz-Zentrum Berlin (HZB) - Home >Forschung >Großgeräte >Forschung mit Spallationsneutronen > VITESS	
Das Zentrum im Überblick	Virtuelles Instrumentierungs-Tool für Neutropenstreuung	Vitess 2.11
▼ Forschung		Windows Installer
 Großgeräte 	an gepulsten und kontinuierlichen Quellen	38100178 Byte, md5sum
Forschung mit		B Unix (Linux+Mac) Tar-Ball
		16148865 Byte, md5sum 7132742b03706e760586ae4d0ed1
ESS Projekt	V	11321420031000100300000400001
VITESS	Willkommen auf der Homepage des "VITESS"-Programms! VITESS (Virtual Instrumentation	
Detektorlabor	Tool for the European Spallation Source) ist ein Programm für Simulationen von Neutronenstreuinstrumenten an gepulsten und kontinuierlichen Quellen.	Vitess 3.0, aktuell
Neutronenontik	Momentan ist es mit VITESS möglich, eine große Bandbreite an Instrumenten an allen wichtigen gegenwärtigen und zukünftigen Neutronenquellen zu	
I armororäzessionsmethoden	simulieren, unter anderem an der sich aktuell in der Manungsphäse bennlichen Europaischen Spalationsqueile (European Spalation Source, 🗠 🖂 SS). Die grandliche Benziertzenberdigkeiten von VitterSS erlaublik einen einfachen Einsteige in das Programm und bilfe [Insen bei der Fristellung in bins für die	Windows Installer 38718214 byte, md5sum
Wissenschaftliche Highlights	Simulation bestimmten Instruments. VITESS läuft derzeit unter allen gängigen Betriebssystemen (Windows, Linux und Apple Macintosh). Wählen Sie	9b1ebd15d5582957297995490e61
Mitarbeiter	einfach rechts die passende Download-Datei und installieren Sie VITESS auf Ihrem Rechner. Die installierte Version enthält Beispielinstrumente, um die	18232958 byte, md5sum
Publikationen	Hauptfunktionen des Programms zu demonstrieren. Diese Instrumente können ebenfalls als Vorlage für das Zusammenstellen Ihres eigenen Instruments	1363618f0ee333145b93fed7049c
Lehre	genutzt werden. Sollten Sie Fragen zu dem Programm haben, egal ob technischer oder physikalischer Art, oder wollen Sie uns einfach Ihr Feedback	8110738 byte, md5sum
Nutzerkoordination	weiter zu helfen. Besuchen Sie auch unseren 12 Facebook-Auftritt, so verpassen Sie keine wichtigen Neuigkeiten oder neue Software-Versionen.	9060a4db492b6a1daa26c268157c
► Angebote		
▶ Aktuell	vitess@helmholtz-berlin.de	Workshops
	Das Konzept	McStas / VITESS user training
	Fin Neutronenstreuinstrument besteht in VITESS aus mehreren Modulen. Diese stellen einzelne Komponenten des Instruments, wie Neutronenleiter oder	workshop 2010
	Detektoren, dar, oder werden für Funktionen wie Transformation des Koordinatensystems zwischen einzelnen Modulen ("frame"), oder für Visualisierung	
	und Auswertung von simulierten Daten benötigt ("monitors"). Alle Module können auf der GUI ausgewählt und in das zu simulierende Instrument eingefügt werden. Diese Module arbeiten während einer Simulation simultan in einer Pipe-Struktur:	

Joint Vitess & McStas workshop 18.09.13 - 20.09.13

VITESS concepts

- Monte Carlo raytracing technique
 - neutrons modeled as trajectories through instrument components
 - each interaction (reflection, scattering) modifies probability weight (= intensity), correct flux independent of simulated number of neutrons
 - trajectories are created in source modules
 - 12 trajectory parameters: time, λ, probability weight, position (x, y, z), direction (cos(alpha), cos(beta), cos(gamma)) and Spin (S_x, S_y, S_z)
- Modular structure
 - component represented by modules (executables) run successively in a pipe: source | guide | sample | detector
 - modules are independent, can run in parallel
 - flexible usage (add/shift components, divide instrument, ...)
- Validity
 - delivered results in good agreement with experiments and other software packages (McStas, Restrax, ...)

How to use VITESS

•Easy to install: available for Windows, Linux, Macintosh

- o download from VITESS website: <u>www.helmholtz-berlin.de</u>
- Mac users need to install libgd, gnuplot: recipe included

🗙 💿	-	Xcontrol /hmi/home_igk/ESS_hstruments/Elipsen_general/Hybrid/Hybrid_version2/HybridSim 😪 🛞 🛞
<u>File Edit Plot</u>	<u>C</u> onfigure <u>T</u> ools	Options Help
Instrument Hybri	dTest	VITESS 3.0 Click parameter names for help!
Check Dryrun	input file	Browse BrowseN Fresh
Start	output file n	_file Browse BrowseN
Trajectories	parameter directory	mi/home_iqk/ESS_Instruments/Ellipsen_general/Hybrid/Hybrid_version2/hybridSim Browse NewDir
Stop Kill	random seed 1	random number man3 - min. neutron 1.0e25 gravity on - helper 3 - Exit
I source_	ess_lpts _ 主	Module 1 source_ESS_LPTS
X ■ 2 mor	1_y - 1	moderator description file EssLPCold.mod Browse BrowseN Edit
X J 3 moni	or1D 🔤 🗈 🖿	source power 5.0 pulse repetition rate [Hz] 14 proton pulse 2.86
X 1 4 mon1.	divy —	name of source ESS
X 5 sp	.ce 🚽 主 🗎	Restriction of sampling trajectories
X ♣ 6 gu	.de 1 🗭	number of IEd
X 7 mon1	_divy _ ▲	trajectories
X 🛃 8 moni	or1D 🚽 🖿 💌	length [A] 0.5 min. time [ms] 0 max. divergence 0.5
🗶 🖳 9 spin_	reset 🔤 主	max. wave- length [] 10 max. time [ms] 10 max. divergence 0.5
X 10 moni	or1D — 主 🕈	direction by vitual window.
X ♥ 11 gu	ide — 🚹 🕈	defined of most method
X 🖡 12 sp	ice — 主 🗎	degree of pola- rization [%]
X 🛃 13 moni	:or1D - 🗈 🖻	polarisation X 0 Y 0 Z 1
X 14 moni	:or1D _ 1	
VITESS versi writing instr de Description for number of t number of t number of t number of t number of t number of t count rate of count rate of count rate of	n 3.0 Linux x86 64 2012-10-11 ia, module 19 module vio visualisation: mon ajectories read: 255 jectories written : 2505 rolaur 1 : 22554-e0 rolaur 2 : 24057e-0 colaur 3 : 4.0658-e0 colaur 4 : 3.9496-0 colaur 5 : 3.9496-0 colaur 5 : 3.9496-0	2 module monitor2D 1.0 ftor2D:grey 11 1 1 4 4+10 1+/- 6.492e+08 n/s 8 n/s 9 n/s 9 n/s 9 n/s 9 n/s 9 n/s

Easy to use: graphical user interface (GUI)

- component list
- parameter describing component
- short help: click on names
- Iong help: documentation
- helper tools
- visualization
- Iog-file and pipe command
- Can also be run from the command line
 - export pipe in batch/tcl/python/perl script

Joint Vitess & McStas workshop

- Runs on Windows, Linux/Unix and Macintosh systems
- Package contains everything need for simulation and basic output visualization

- Transport
 - Guides
 - Benders

Optics

- Slits
- Collimators
- Lenses
- Prisms
- Monochromatization
 - Disc choppers
 - Fermi choppers
 - Crystal monochromators
- Polarization
 - Polarizers
 - Flippers
 - Magnetic fields

Modules representing Hardware

Joint Vitess & McStas workshop 18.09.13 – 20.09.13

11

Structure of Functions and Classes

GUI and Script

🏶 Vitess - Microsoft Visual Studio

RunCommand_Fu...gGuides2cm.pl*

\$L=\$L.\$totalAngle;

\$globalShiftInZ = 0;

Datei Bearbeiten Ansicht Projekt Erstellen Debuggen Extras Test Eenster Hilfe

🛐 🕶 🛅 🕶 🛃 🍠 👗 🐚 🛝 🌱 🕶 (** 🗸 📮 * 🖏 🕨 Debug 🔹 Win32

for (\$currentStep = 0; \$currentStep <= \$numSteps; \$currentStep++) {</pre>

- 🕺 🚰 🕺 🎘 💽

🔹 🌁 Cleanup

_ 🗆 🗙

۵

• ×

.. ₹

- Scripts
 - Python
 - Perl
 - Shell script

Tcl script	<pre>require "CalculateAnglesForBendingGuidesDiscreteAngles.pm"; \$angleFrame1 = (calculateAngle(1, \$totalAngle))*(-1); \$angleFrame2 = (calculateAngle(2, \$totalAngle))*(-1);</pre>						
Xcontrol D:/Programme/Vitess2-11-beta	<pre>\$angleFrame3 = (calculateAngle(3, \$totalAngle))*(-1);</pre>						
<u>File Edit Plot Configure Tools Options H</u> elp	<pre>\$angleFrame4 = (calculateAngle(4, \$totalAngle))*(-1); \$angleFrame5 = (calculateAngle(5, \$totalAngle))*(-1);</pre>						
Instrument TestEvalSans VITESS 2.11	<pre>\$angleFrame6 = (calculateAngle(6, \$totalAngle))*(-1);</pre>						
Check input file	<pre>\$sumAngle = \$angleFrame1 + \$angleFrame2 + \$angleFrame3 + \$angleFrame4 + \$angleFrame5 + \$angleFrame6;</pre>						
output file no_file	<pre>\$doubleAngle = \$totalAngle*2;</pre>						
Start par ameter in mener	<pre>\$doubleAngleNeg = \$totalAngle*(-2);</pre>						
Trajectories directory N/EvalElast	<pre>\$highestQ = 12.56*sin(\$totalAngle*\$globalDegToRad)/2 + 0.1;</pre>						
Stop Kill random seed 2 random number ran3 - weight 1.0e-6	<pre>\$heightFirstSlit = tan(0.1*\$totalAngle*\$globalDegToRad)*\$globalDistanceBetweenSlits; \$heightSecondSlit = tan(\$totalAngle*\$globalDegToRad)*\$globalSampleLength;</pre>						
▲ X J 1 source_ESS_LPTS J ● Module X J 2 sample sams J ● S(Q) file SofQ.emt	print("Angle1: ŞangleFrame1, Angle2: ŞangleFrame2, Angle3: ŞangleFrame3, Angle4: ŞangleFrame4, Angle5: Şan print("z shift: ŞqlobalShiftInZ \n");						
X ↓ 3 Deamstop T → file isotropic500.emt	system "\$V/frame_Linux_x86_64Z1U1.0e-25G1T0B10000P\$Pf/net/home/iod/work/Reflectometer/C						
A detector in the number 400 minimum of bins 400 [1/Å_]	<pre>\$totalAngle = \$totalAngle + \$angleStep;</pre>						
X ↓ 5 mon2_pos 1 → scattering prove increase to	<pre>scyffentAngle = (\$currentAngle - \$angleStep/4); scyffentAngleBalf = ScyrrentAngle / 2:</pre>						
X							
X J 7 eval_sans _ 1 time of flight yes _	<pre>\$totalAngleTemp = \$totalAngle - \$angleStep;</pre>						
X V 8inactive 1 + flight 30600 time offset [ms]	<pre>pwrite("\$P/result.txt".\$totalAngleTemp."_".\$currentTime, "\$L"); }</pre>						
time interval begin [ms] -1.e10 time interval end [ms]							
	Bereit Z 96 S 1 Zei 1 EINFG //						
-							
Pipe command would be :							
Big U:/Programme/Vitess2-11-beta/MODULES/source.exe -S3 -Z2 -U1.0e-5G0T0B10000PN:/EvalElast -LN:/EvalElast/ D:/Programme/Vitess2-11-beta/MODULES/sample_sans.exe -Z2U1.0e-6G0T0B10000PN:/EvalElastLN:/EvalElast	cs1328599546vpipelog1 -NESS -L5.0 -R14 -p2.857 -aN:/I						
Clear D:/Programme/Vitess2-11-beta/MODULES/beamstop.exeZ2U1.0e-6G0T0B10000PN:/EvalElastLN:/EvalElast D:/Programme/Vitess2-11-beta/MODULES/detector.exeZ2U1.0e-6G0T0B10000PN:/EvalElastLN:/EvalElast/id	ircs1328599546vpipelog3 -d595 -R0 -p0 -W1 -H1						
Save D:/Programme/Vitess2-11-beta/MODULES/mon2_pos.exeZ2U1.0e-6G0T0B10000PN//EvalElastLN//EvalElast	/ics1328599546/vpipelog5-ON/EvalElast/detector.pos-y						
D://rogramme/Vitess2-11-beta/MODULES/eval_east.exe -z2U1.0e-0s010D1000PN/EvalEtast -LN/EvalEtast	fics 1328599546vpipelog7 -SN/EvalElast/SofQ.emt -IN/E						
Joint	Vitess & McStas workshop						

18.09.13 – 20.09.13

VITESS Log File and Monitor Output

31.5

31.5

2.4e+003

Joint Vitess & McStas workshop 18.09.13 - 20.09.13

140

Visualization of Instruments and Trajectories

- Idea: 3D visualization of instrument and trajectories
- Problem: no information about the absolute co-ordinate systems exists in the VITESS modules
- **Solution**: A preliminary run creating the file '*instrument.inf*' containing absolute positions of the components
- The simulation output files 'geometry, inf and 'trajectories.dat' contain positions in an absolute co-ordinate system
- This is then transferred to a file in x3d format to be read by a X3D viewer

18.09.13 - 20.09.13

- Goals
 - Q-range up 0.9 Å⁻¹ from both sides
 - 1% to 10% resolution
 - Low background

Bending guides: 5 Coating: m=5 Angles: 0.3° < θ < 9°

- Concept of EXED
 - TOF diffractometer
 - beam extraction system to use neutrons of cold and thermal moderator
 - kink to suppress hot neutrons
 - pulse generation by double chopper system or Fermi chopper
 - elliptic tapered guide
- Results
 - resolution of 2x10⁻⁴ possible
 - large gain by elliptic focusing guide
- J. Peters, K. Lieutenant, D. Clemens, F. Mezei, Z. Kristallogr. Suppl. 23 (2006) 189-194. K. Lieutenant, J.Peters, F. Mezei, J. Neutron Res. 14.2 (2006) 147-165.

1.0

0.8

Numerical Optimization of whole Instruments

Diffractomer ODIN at IFE

Diffractometer ODIN at IFE – Swarm Algorithm

take off angle	deg						60 deg				120 deg		
number of lines							15				23		
scatterig range	deg						10 - 100				10 - 145		
parameter		min	fixed	max	best FoM	2nd FoM	3rd FoM			best FoM	2nd FoM	3rd FoM	
ID					28.37	17.41	8.31	4.47	1.07	49.17	40.49	34.31	
collimation (channels)	min	5.0		120.0	124 (1)	124 (1)	124 (3)	120 (5)	26 (23)	21 (28)	24 (25)	21 (28)	
slit width	cm	0.50		8.00	7.73	7.76	7.70	8.00	6.17	7.58	7.48	7.32	
slit height	cm	3.00		18.40	10.53	11.34	11.34	10.38	10.64	18.28	16.90	16.03	
hor mosaicity	min		12.0										
vert mosaicity	min		24.0										
vert focus radius	m	1.50		20.00	20.00	20.00	20.00	20.00	20.00	8.30	11.72	11.98	
hor focus radius	m	2.00		20.00	20.00	20.00	20.00	19.91	20.00	14.70	14.87	15.20	
monochr - sample dist	cm		180.0										
detector radius	cm		190.0										
detector rows		3		30	29	29	30	28	29	29	30	30	
detector height	cm		2.54xN _{rows}		73.7	73.7	76.2	71.1	73.7	73.7	76.2	76.2	
count rate	n/s				180.2	175.4	177.3	160.1	113.6	38.7	41.2	36.0	
resolution x 1000	Å ⁻²				4.354	4.319	4.379	4.309	3.785	2.587	2.642	2.527	
sigma _{pos}	deg				0.00500	0.00500	0.00507	0.00500	0.00500	0.0060	0.0060	0.0060	limit 0.006
$1/FoM [10^{-10} Å^{-2} deg^2 s/n]$					6.039	6.157	6.354	6.730	8.331	2.077	2.081	2.084	1/FoM = sigma ^{1.5} R ³ /I

Optimization

- Method: swarm algorithm
- Some parameters are strongly correlated, not all can be determined simultaneously
- Therefore: sizes and monochromator mosaicity fixed
- Results
 - Optimal detector height is very large (later fixed to 50 cm)
 - The focusing should be weak

Long Guide Systems – Optimization

- Idea: optimize all types of guides for highest flux at sample (1 x 1 cm²)
 - constant ballistic elliptic parabolic
- Indepently for all combinations of
 - 50 m, 100 m, 150 m, 300 m total instrument length
 - 0.5° and 2.0° max. divergence
 - 1.5 and 5.0 Å average wavelength (range as is accessible at ESS for baseline parameters: 16.7 Hz, 2 ms)
- Optimization split between DTU (K. Klenø, McStas) and HZB (K. Lieutenant, VITESS) Final runs with both packages
- Fixed parameters
 - Moderator size 12 x 12 cm² (all sizes symmetric in width and height)
 - Coating and waviness
 - Distance moderator sample 1.5 m
- Optimized parameters
 - Maximal, entrance and exit width/height of guide (max. width 40 cm)
 - Lengths of diverging and converging section, max. 30 % of total length
 - End position of guide (min. distance 0.5 m)

VITESS is being used for basic research of neutron instrumentation

- Fundamental study of neutron propagation through elliptic guides
 - Aberrations, multiple scattering, guide segmentation
 - L. Cussen et al, NIM A 705 (2013) 121-131
- Extraction of neutrons from two moderators with a supermirror system

C. Zendler et al., NIM A: 704, 2013, 68-75

- The depende of gravity effects in elliptic neutron guide on the size of the feeding source
 - To appear in proceedings of the NOP & D 2013

Parallelisation

Split of whole simulation for

At the end, the results are

individual runs

final result

clusters

.

- Helper threads for multi-core processors
 - In addition to the main thread, n 'helper threads' can be defined
 - The main thread gives 1/(n+1)of the trajectories to each helper thread and treats the same number it self
 - All threads work on the same • memory
 - At the end, the main thread collects the resulting data and takes care of the output

We like to thank the BMBF for their support through the contribution to the ESS update phase. Work package K7: Simulationscode-Entwicklung, Helpdesk work package

Thank you for your attention

New Optimization Concept for VITESS 3.1

K. Lieutenant

VITESS

Neutron 2.0 Workshop

VITESS

VITESS

Example: Optimization of guide trumpet

Table 3.	Properties of a converging guide with elliptic shape obtained in runs with different initial
values us	ing the least-square fitting method and the Metropolis algorithm.

Method	Run	Long axis (m)	Short axis (cm)	Shift (m)	Exit size (cm)	Average transmission (%)	Flux on sample $(n \text{ cm}^{-2} \text{ s}^{-1})$
Least-square	1	13.75	6.50	-1.14	3.81	18.3	2.01×10^9
Least-square	2	13.77	7.48	-1.30	4.28	18.2	1.95×10^9
Least-square	3	11.90	6.46	0.47	3.87	18.7	2.05×10^9
Least-square	4	8.63	6.46	3.09	3.87	20.2	2.21×10^9
Least-square	5	7.80	6.58	3.83	4.03	20.5	2.28×10^9
Metropolis ^a	1	10.61	6.33	1.68	3.93	19.2	2.10×10^9
Metropolis ^b	1	7.94	6.60	3.69	4.00	20.6	2.28×10^9
Metropolis ^c	1	7.96 ± 0.23	6.54 ± 0.09	3.66 ± 0.18	4.00	20.6	2.28×10^9

^a Best parameter set within first 1000 steps.

^b Best parameter set during run (stopped after 4100 steps).

^c Average over the last 388 executed steps (limit of maximum set to 20%, see text).

Figure 3. Transmission as a function of exit width (full squares). The arrows mark the sizes found in optimization runs using least-square fits (thin arrows) and Metropolis algorithm (thick arrow). The indicated range shows average value and standard deviation (for the size) of the random walk within the maximum using the Metropolis algorithm.

K. Lieutenant, J.Phys.:Condens.Matter 17 (2005) S167

- Statistical effect of the Monte Carlo method make numerical optimization difficult
- But it is feasible

Joint Vitess & McStas workshop

18.09.13 - 20.09.13

Visualization of Instruments and Trajectories

geometry.inf - Editor

<u>D</u> atei <u>B</u> earbeiten F <u>o</u> rm	at <u>A</u> nsicht <u>?</u>									
DEF grey= <materia< td=""><td>l_diffuseCo</td><td>olor='.6.6</td><td>.6' emissiv</td><td>eColor='.6 .</td><td>6.6'trans</td><td>parency='.4'</td><td>/></td><td></td><td></td><td></td></materia<>	l_diffuseCo	olor='.6.6	.6' emissiv	eColor='.6 .	6.6'trans	parency='.4'	/>			
DEF black= <materia< td=""><td>al diffuseO</td><td>Color='.01 .</td><td>01 .01' emī</td><td>ssiveColor='</td><td>.01 .01 .01</td><td>' transparen</td><td>icy='.4'/></td><td></td><td></td><td></td></materia<>	al diffuseO	Color='.01 .	01 .01' emī	ssiveColor='	.01 .01 .01	' transparen	icy='.4'/>			
DEF white= <materia< td=""><td>al diffuseO</td><td>Color='.99 .</td><td>99 .99' emi</td><td>ssiveColor='</td><td>.99 .99 .99</td><td>' transparen</td><td>ncy='.4'/></td><td></td><td></td><td></td></materia<>	al diffuseO	Color='.99 .	99 .99' emi	ssiveColor='	.99 .99 .99	' transparen	ncy='.4'/>			
#										
#units	-									
# [m] position,	length, w	idth, height	:, radius							
# [deg] angels										
#	0 00000	0.00000	0 00000	1 00000	0.00000	0.00000	0.00000	0.00000	260,00000,	
Circle	0.00000	0.00000	0.00000	1.00000	0.00000	0.00000	0.08000	0.00000	360.00000 source:yellow	=
Rectangle	4.14500	0.00000	0.00000	1.00000	0.00000	0.00000	0.08300	0.16/00	0.00000 source:yellow	
Cylinder	0.36500	0.00000	0.00000	1.00000	0.00000	0.00000	0.00000	0.0/100	space window	
Rectangle	1.34500	0.00000	0.00000	1.00000	0.00000	0.00000	0.0/000	0.14000	0.00000 slit:cyan	
Rectangle	2.84500	0.00000	0.00000	1.00000	0.00000	0.00000	0.0/000	0.14000	0.00000 slit:cyan	
Rectangle	2.84500	0.00000	0.00000	1.00000	0.00000	0.00000	0.15000	0.15000	0.00000 monitor1_wavelength:grey	
Cylinder	3.09500	0.00000	0.00000	1.00000	0.00000	0.00000	0.50000	0.05000	Collimator:white	
Rectangle	3.34500	0.00000	0.00000	1.00000	0.00000	0.00000	0.15000	0.15000	0.00000 monitor1_horizontal :grey	
Rectangle	3.79500	0.00000	0.00000	1.00000	0.00000	0.00000	0.08300	0.16700	0.00000 slit:cyan	
Cylinder	4.07000	0.00000	0.00000	1.00000	0.00000	0.00000	0.55000	0.05000	Monochr_analyser:white	
Rectangle	4.34500	0.00000	0.00000	-0.25882	-0.96593	0.00000	0.15000	0.15000	0.00000 monitor1_wavelength:grey	-

- Each Module adds lines to the geometry file that describe the component geometry
- Each event of a neutron creates a line in the trajectories file
 - Entering, passing or exiting a component
 - Reflection, scattering or absorption

TrajTest.dat - Edito	r							•	×
<u>D</u> atei <u>B</u> earbeiten Fo	<u>o</u> rma	it <u>A</u> nsicht <u>?</u>							
# Trajectories									
#									-
# units # [m] positio									=
# [Ang] lambda									
# [n/s] weight									
#									
# ID CO	lor	lambda	weight	pos_x	pos_y	pos_z	spin	rsn	
AA00000001	0	1.18148	0.000e+000	0.00000	0.00992	0.04881	1	0	
AA00000001	0	1.18148	0.000e+000	1.00000	0.00298	0.04477	1	3	
AA00000002	0	3.24376	0.000e+000	0.00000	0.00236	0.01234	-1	0	
AA00000002	0	3.24376	0.000e+000	1.00000	-0.02073	-0.02954	-1	3	
AA00000003	0	3.09758	0.000e+000	0.00000	-0.01849	0.05891	-1	0	
AA00000003	0	3.09758	0.000e+000	1.00000	-0.01399	0.01327	-1	3	
AA000000004	0	5.78118	0.000e+000	0.00000	-0.04933	-0.00452	-1	0	
AA000000004	0	5.78118	0.000e+000	1.00000	-0.00009	0.00136	-1	3	
AA00000005	0	6.49735	0.000e+000	0.00000	0.04891	-0.03406	1	0	
AA00000005	0	6.49735	0.000e+000	1.00000	0.02124	0.00462	1	3	
AA00000006	0	2.23889	0.000e+000	0.00000	0.01437	-0.05372	1	0	
AA00000006	0	2.23889	0.000e+000	1.00000	0.02818	0.00052	1	3	
AA00000007	0	3.99686	0.000e+000	0.00000	0.06738	0.03288	1	0	
AA00000007	0	3.99686	0.000e+000	1.00000	-0.02421	-0.03183	1	3	
									~

Components with visualization in VITESS 3.0

VITESS Neutron 2

Neutron 2.0 Workshop

Instrument visualization and information about component positions

# N	o ID	module	len [m]	x [m]	y [m]	z [m]	hor. [deg] ver.
" - 0	1	Source and Window	0.00000	0.00000	0.00000	0.00000	0.000	0.000
1	1	Source and Window	2.00000	2.00000	0.00000	0.00000	0.000	0.000
2	11	guide_parallel	6.00000	6.00000	0.00000	0.00000	0.000	0.000
3	101	monitor1_wavelengt	6.00000	6.00000	0.00000	0.00000	0.000	0.000
4	31	Disc Chopper	6.00000	6.00000	0.00000	0.00000	0.000	0.000
5	101	monitor1_wavelengt	6.00000	6.00000	0.00000	0.00000	0.000	0.000
6	20	Space	7.00000	7.00000	0.00000	0.00000	0.000	0.000
- 7	11	guide_parallel	9.00000	9.00000	0.00000	0.00000	0.000	0.000
8	31	Disc Chopper	9.00000	9.00000	0.00000	0.00000	0.000	0.000
9	131	frame	9.00000	9.00000	0.00000	0.00000	0.000	0.250
10	11	guide_parallel	11.30000	11.29998	0.00000	0.01004	0.000	0.250
11	11	guide_parallel	18.50000	18.49991	0.00000	0.04146	0.000	0.250
12	11	guide_parallel	20.22000	20.21989	0.00000	0.04896	0.000	0.250
13	131	frame	20.22000	20.21989	0.00000	0.04896	0.000	0.000
14	11	guide_parallel	31.00000	30.99989	0.00000	0.04896	0.000	0.000
15	31	Disc Chopper	31.00000	30.99989	0.00000	0.04896	0.000	0.000

VITESS

25.03.2013

instrument.inf - Editor

Datei Bearbeiten Format Ansicht ?

K. Lieutenant

Neutron 2.0 Workshop

ITESS

30

Defining variable parameters

Excel or other Table calculator

num traj.	Imbd _{min}	Imbd _{max}	coll	imator		monochr	
	[Å]	[Å]					
			no	d_{blade}	file	norm.fact.	radius
9000000	1.515	1.565	20	0.027	Ge511_090.par	0.586	147.5
9000000	1.515	1.565	15	0.027	Ge511_090.par	0.586	147.5
9000000	1.515	1.565	11	0.027	Ge511_090.par	0.586	147.5
9000000	1.515	1.565	1	0.027	Ge511_090.par	0.586	147.5

TableSeries.txt - Edit	or						x
<u>D</u> atei <u>B</u> earbeiten F <u>o</u> r	rmat <u>A</u> nsicht	2					
9000000 1.515 9000000 1.515 9000000 1.515 9000000 1.515	1.565 1.565 1.565 1.565	20 15 11 1	0.027 0.027 0.027 0.027	Ge511_090.par Ge511_090.par Ge511_090.par Ge511_090.par	0.586 0.586 0.586 0.586 0.586	147.5 147.5 147.5 147.5	4 III +

Optimization

- MC simulation and numerical optimisation combined
 - Several Mio. trajectories need to be started in order to have 20'000 to 100'000 contributing to the figure of merit

Gains relative to guide of constant cross-section

total length [m]	max. div. [deg]	moderator	elliptic	parabolic	ballistic	
	101			VITESS		
50	0.5	Thermal	1.91	1.97	1.67	
50	0.5	Cold <	0.96	1.04	1.04	\wedge
50	2.0	Thermal	10.04	8.88	5.26	
50	2.0	Cold	5.14	5.52	3.92	
100	0.5	Thermal	2.52	2.62	2.24	
100	0.5	Cold	1.07	1.08	1.11	
100	2.0	Thermal	15.29	13.12	6.04	
100	2.0	Cold	6.89	6.59	5.09	
150	0.5	Thermal	3.01	3.24	2.79	
150	0.5	Cold	1.10	1.10	1.14	
150	2.0	Thermal	21.68	19.37	6.06	
150	2.0	Cold	8.48	8.21	6.06	
300	0.5	Thermal	3.84	4.45	3.34	
300	0.5	Cold	1.25	1.28	1.29	
300	2.0	Thermal <	29.37	23.85	7.72	\land
300	2.0	Cold	9.40	10.90	7.94	

 $Gain = \frac{I_{sample,shape}}{I_{sample,const}}$

 Gains depend strongly on divergence and wavelength range and also on guide length

	low gain	high gain
divergence	low	high
wavelength	long	short
guide length	short	long

• Comparison of shapes

- Elliptic guides are usually best
- Parabolic constant parabolic guides yield nearly the same intensity

VITESS

- Ballistic guides have lower gains
- Guides of constant cross-section can only compete for cold neutrons of low divergence

33

Principle: Monte Carlo Simulation of Instruments Example: R2D2

HZB

Helmholtz

- High intensity
 - Focusing of neutron beam
 - Large detector coverage
- High resolution
 - Well collimated beam
 - Narrow wavelength band (steady state instrument)
 - Short pulses and long instrument (time-of-flight instrument)
- Flexibility
 - change between high resolution and high intensity
- Whole measurement in one shot
 - Broad Q-range
- General
 - Effective neutron transport from source to sample
 - No direct view from source to sample
 - Low background (-> long instruments)

VITESS

- Neutron sources have a low brilliance
 - "brightest neutron source emits as many neutrons as a candle emits photons"
 - Source brilliance cannot be increased any more by orders of magnitude
- Consequences

25.03.2013

- Neutrons have to be used efficiently
- Instruments have to be as good as possible

- Origin: Manhattan project, Los Alamos
- Used in a wide range of applications
 - physics
 - finance and business
 - telecommunication
 -

25.03.2013

- Several programs exist for neutron instrumentation (McStas, VITESS, Restrax, NISP, IDEAS, ...)
- Basic Idea: Random choice of parameters instead of scanning through parameter space
 - In the beginning, use of roulette numbers as random numbers
 - (Therefore the name Monte Carlo simulations)
 - Nowadays, special routines to create series of 'independent' numbers

VITESS

 Good agreement between simulation and analytical calculations, but not with measurement

Example: Improvement of R2D2 using NAC sample

VITESS Neutron 2.0 Workshop

Why Monte Carlo Simulations of Neutron Scattering Instruments

- Instrument optimization
 - New ideas can be tested first in a simulation
 - Different option can be compared
 - Numerical optimization is possible
- Virtual experiments
 - If some information about the sample is available, it can be checked what time and which settings are needed for the real experiment
- Instrument and data analysis
 - Simulations provide a large amount of information on the properties of the neutrons (e.g. on correlations in phase space and spin space)

VITESS

- They allow comparing true and measured sample properties
- Teaching

E. Farhi, M. Johnson, V. Hugouvieux and W. Kob, ILL Annual Report (2006) 87.

VITESS

