Brazilian Multipurpose Reactor Project (RMB)

Fabiano Yokaichiya

Brazilian Nuclear Energy Commission (CNEN) insituto de Pesquisa Energeticas e Nucleares (IPEN)

> fabiano.yokaichiya@gmail.com fyokaichiya@ipen.br

Arquitetura voltada ao Green Building

RMB Reator Multipropósito Brasileiro

Sirius - Brazilian Synchrotron

Plano de Trabalho 02.Abril.2013 Convênio CNPEM-CNEN

Today

LNLS - Brazilian Synchrotron

1997 Energy: 1.37 GeV 14 beamlines

IEA-R1

1957 Power: 4.5 MW 2 instruments

Arquitetura voltada ao Green Building

RMB Reator Multipropósito Brasileiro

Sirius - Brazilian Synchrotron

2018 Energy: 3 GeV 40 beamlines

Plano de Trabalho 02.Abril.2013 Convênio CNPEM-CNEN

e Inovação

2018 Power: 30 MW 18 instruments

Brazilian Multipurpose Research Reactor (RMB)

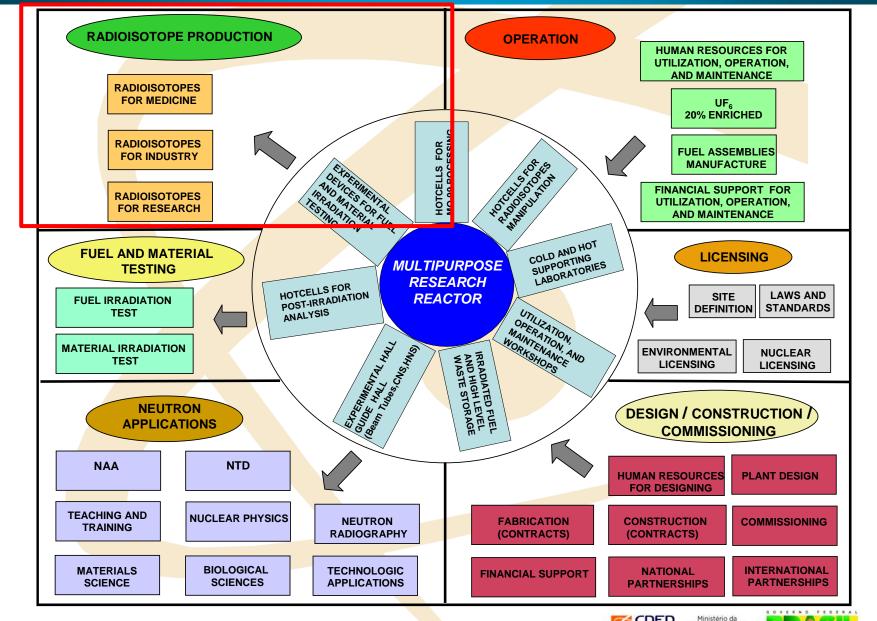

Main Functions

- Radioisotope Production for Medical and Industrial Applications
- Fuel and Materials Irradiation Testing
- Neutron Beam Scientific and Technological Research
- Education and Training

RMB Project Scope

Ciência, Tecnologia

e Inovação


Reactor Characteristics

- Open pool multipurpose research reactor with a primary cooling system through the core – OPAL RR as a reference model for conceptual design.
- The reactor core will be compact, using MTR fuel assembly type, with planar plates, U₃Si₂-Al dispersion fuel with maximum 4,8 gU/cm³ density and 20 % U-235 enrichment.
- The reactor core will be cooled and moderated by light water, using heavy water as reflector and light water and/or beryllium in one side of the core.
- > Neutron flux (thermal and fast) higher than 2×10^{14} n/cm².s.
- Maximum Thermal Power 30 MW

RMB Project Scope

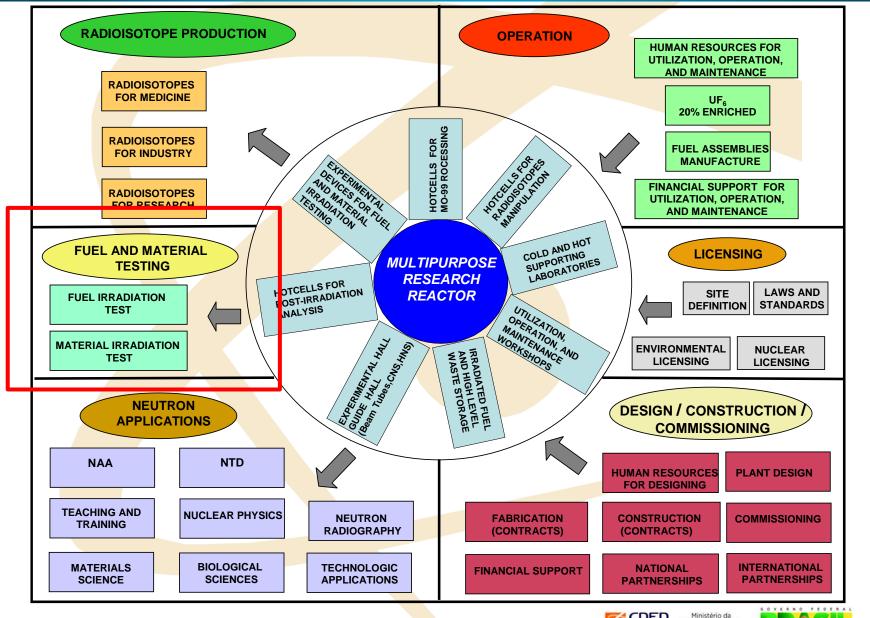
Ciência, Tecnologia

e Inovação

Radioisotope Production

- Radioisotope for Injectable Radiopharmaceuticals
 - ✤ ⁹⁹Mo , ¹³¹I, ⁵¹Cr, ¹⁵³Sm, ¹⁷⁷Lu, ¹⁶⁶Ho, ⁹⁰Y, ¹⁸⁸W, ³²P
 - ⁹⁹Mo obtained by LEU target irradiation and processing
 - 1000 Ci/week (Today 350 Ci/week imported by IPEN and 450 Ci/week before the international crisis)
- Radioisotope for Brachtherapy
 - ♣¹²⁵], ¹⁹²]r
- Radioisotope for Industry
 - <mark>∻¹⁹²I</mark>r, ⁶⁰Co
- Tracers

✤²⁰³Hg , ¹³¹I, ⁸²Br


Infrastructure

- Processing hot cells for irradiated U targets (LEU) to produce ⁹⁹Mo and ¹³¹I;
- Hot cells for handling and transport preparation of produced radioisotopes;
- Special hot cells for radioactive sources processing and sealing;
- Hot cell and special devices for ¹²⁵I production;
- Shielded casks for radioisotope transportation;
- Irradiation devices for in core and in reflector radioisotope production;

RMB Project Scope

Ciência, Tecnologia

e Inovação

Nuclear Fuel and Materials Irradiation Test

Materials	Test Objective	
Nuclear Fuels	Fuel Performance Characterization and Specification Optimization	
Structural Materials	Life Extension of Nuclear Power Plants Characterization of Materials and Performance under Irradiation	
All	Safety Analysis	

Ministério da

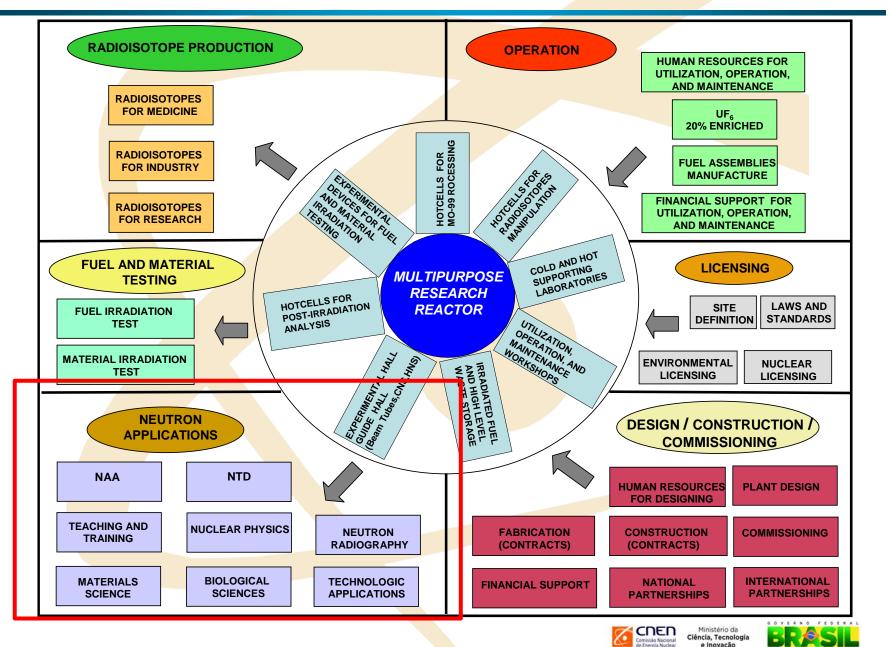
Ciência, Tecnologia e Inovação

Irradiation Systems

- Pressurized irradiation loops for fuel testing with pressure and cooling temperature control
- Irradiation capsules for fuel specimens testing
- Horizontal displacement devices for simulating power ramps and loading following
- Irradiation capsules with temperature control for structural materials testing
- Irradiation experiments control room and data collection systems
- Experimental devices for underwater nondestructive analysis (visual inspection, gamma scanning, sipping, etc)

Post-irradiation Examination

One hot cell laboratory for irradiated fuel and one hot cell laboratory for irradiated materials examination


The hot cells laboratory shall allow:

- Nondestructive physical characterization analysis of irradiated specimens
- Puncturing and fission gas collection
- Sample preparation for metallographic analysis
- Optical microscopy
- Physical and mechanical properties characterization equipment

RMB Project Scope

PAIS RICO E PAIS SEM POBREZA

Neutron Beam Utilization

Neutron beam group:

Fabiano Yokaichiya Margareth Franco Francisco Souza

- To allow the possibility of at least three beam holes (today proposed 5)
- To project two beam holes with neutron guides: one for thermal and one for cold neutrons. Each beam hole shall have capacity for at least 2 neutron guides (today with 3 guides)
- The technical characteristics of each beam hole (dimensions and position) will be established during the preliminary design of the reactor.
- Each beam hole shall have a flux higher than:
 - $> 1 \times 10^9$ n/cm².s outside the reactor shielding; or
 - > 1×10^{14} n/cm².s at the point of tangency near the core.

Neutron Beam Utilization

Initial Equipment Proposal

Thermal Neutrons Beam

Guide Hall	Experimental Hall		
High Resolution Diffractometer	Triple-Axis Spectrometer		
High Intensity Diffractometer	Neutron radiography		
Reflectometer			
Time-of-Flight Spectometer			
Cold Neutrons Beam			
Small Angle Neutron Scattering			
Prompt Gamma Analysis			

Ministério da Ciência, Tecnologia e Inovação

Neutron Beam Utilization

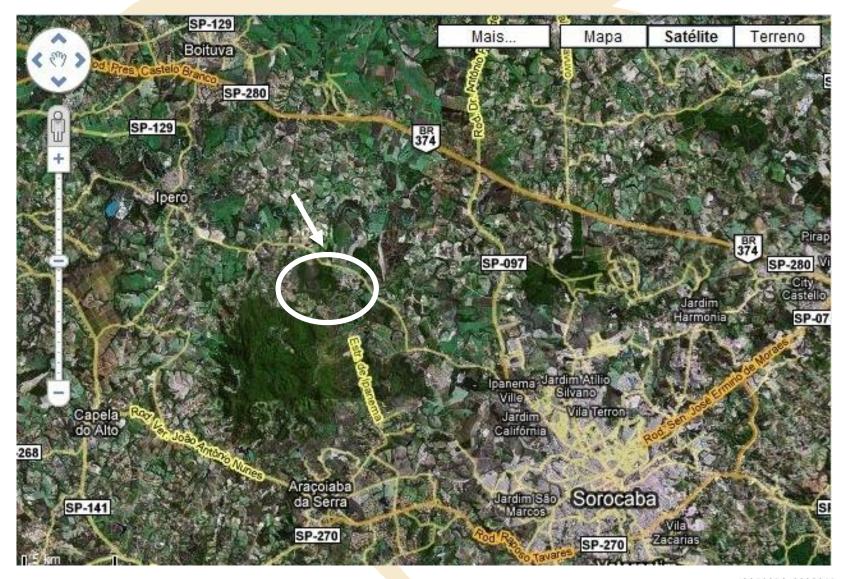
Thermal Neutrons Beam

Guide Hall	Experimental Hall	
High Resolution Diffractometer	Triple-Axis Spectrometer	
High Intensity Diffractometer	Neutron radiography	
Reflectometer		
Time-of-Flight Spectometer		
Cold Neutrons Beam		
Small Angle Neutron Scattering		
Prompt Gamma Analysis		

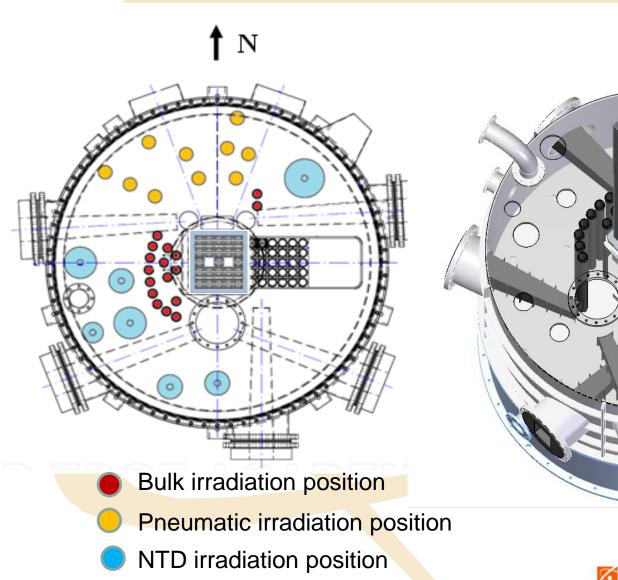
- Neutron Activation Analysis at irradiation positions with thermal neutron flux in the range of 10¹¹ to 10¹³ n/cm².s.
- One irradiation position with cadmium filter for epithermal neutrons activation.
- Pneumatic stations with transit time of 10 seconds, and one very fast station with transit time less than 10 seconds for analysis of radioisotopes with very high decay constant.
- Pneumatic stations for transportation of samples (long irradiation) from core to the radiochemical laboratory.
- Fission delayed neutron measurement system for samples containing U and Th.

Project Management

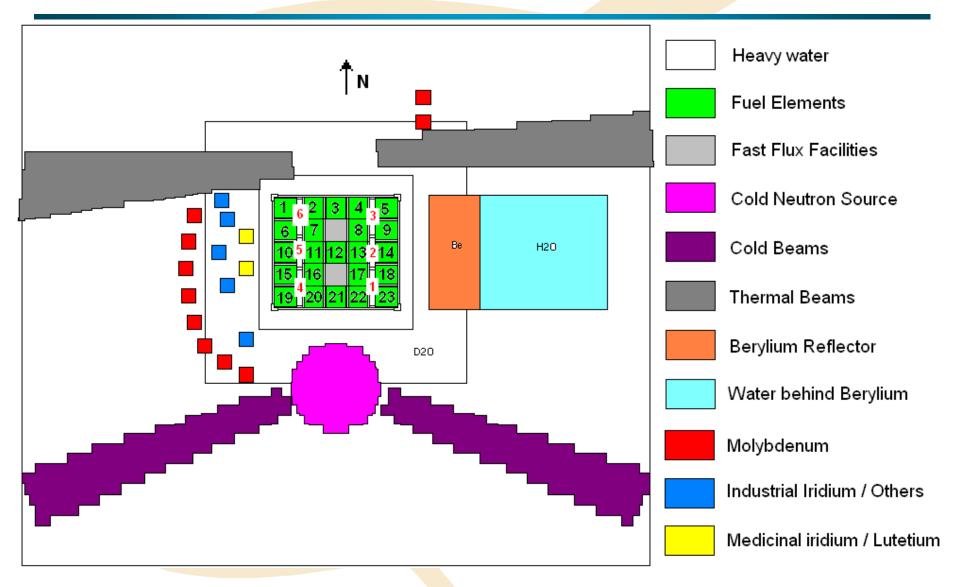
- Project managed by the Research and Development Directorate of the Brazilian Nuclear Energy Commission (DPD-CNEN)
- Scope and preliminary design, licensing process managing and commissioning verification performed by the Research Institutes of CNEN: IPEN, CDTN, IEN, CRCN
- CNEN CNEA (Argentina) Cooperation Agreement on Reactor Design of RMB and RA-10 based on INVAP / Opal design
- Basic and detailed design, manufacturing, construction, assembling and their management will be carried out by national and international companies.
- Project technically supported by Brazilian Academy
- Project Cost estimation of US\$ 500 million (R\$ 1000 million)
- Project time span of at least 6 years after the first contract signature and availability of funds. (2013)


Site

Site



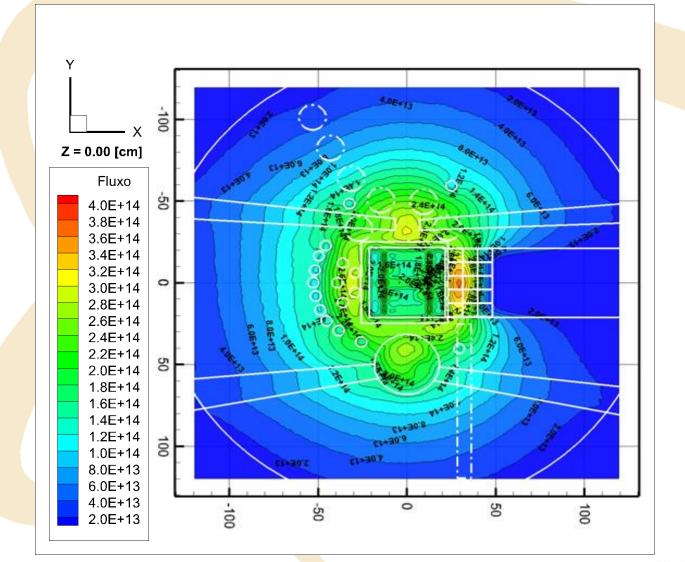
RMB Reactor



linistério da

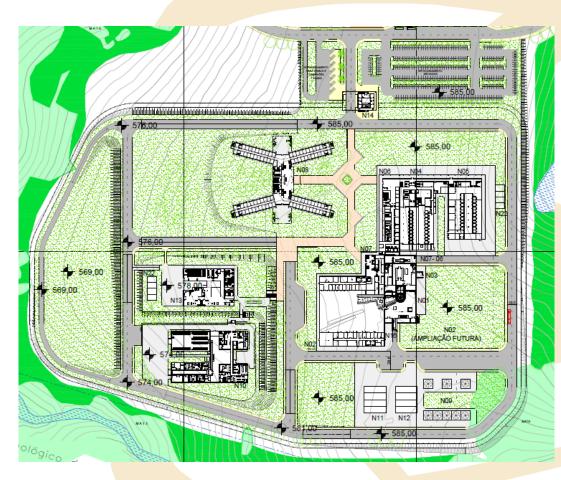
e Inovação

RMB Reactor



Ministério da lência, Tecnologi e Inovação

RMB Reactor



Ministério da Clência, Tecnologia e Inovação

RMB Buildings

- N01 Reactor
- N02 Neutron Beam Laboratory
- N03 Spent Fuel and Material Handling
- N04 Radioisotope Processing
- N05 Post-Irradiation Laboratory
- N06 Radiochemistry Laboratory
- N07 Operation Office
- **N08 Researchers Offices**
- **N09 Cooling Towers**
- N10 Waste Treatment and Storage
- N11,N12 Electrical Cabins
- N13 Workshop
- N14 Access Control

Ministério da incia, Tecnologi e Inovação

RMB Buildings

Ministério da Clência, Tecnologia e Inovação

Thank you!

